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Pattern selection in a lattice of pulse-coupled oscillators
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We study spatio-temporal pattern formation in a rindNadscillators with inhibitory unidirectional pulselike
interactions. The attractors of the dynamics are limit cycles where each oscillator fires once and only once.
Since some of these limit cycles lead to the same pattern, we introduce the concept of pattern degeneracy to
take it into account. Moreover, we give a qualitative estimation of the volume of the basin of attraction of each
pattern by means of some probabilistic arguments and pattern degeneracy, and show how they are modified as
we change the value of the coupling strength. In the limit of small coupling, our estimative formula gives a
pefect agreement with numerical simulatioff81063-651X%99)02110-§

PACS numbd(s): 05.90+m, 87.10+€, 05.50+q, 87.17.Aa

[. INTRODUCTION properties and get a quantitative estimation of the probability
of pattern selection under arbitrary initial conditions or, in

The study of the collective behavior of populations of the language of dynamical systems, the volume of the basin
interacting nonlinear oscillators has attracted the interest off attraction of each pattern. Keeping this goal in mind, we
physicists and mathematicians for many years since they ca#ill use the general results given [d3] where, assuming a
be used to modelize several chemical, biological, and physisystem defined on a ring, the authors developed a mathemati-
cal systemg1,2]. Among them, we should mention cardiac cal formalism powerful enough to get analytic information
pacemakers cel[8], integrate and fire neurofd], and other  on the system, not only about the mechanisms which are
systems made of excitable unft]. Most of the theoretical responsible for synchronization and formation of spatio-
papers that have appeared in the scientific literature deal witiemporal structures, but also, as a complement, to confirm
oscillators interacting through continuous-time couplings, alunder which conditions they are stable solutions of the dy-
lowing them to describe the system by means of couplediamical equations.
differential equations and apply most of the modern nonlin- Despite the apparent simplicity of the model, some ring
ear dynamics techniques. More challenging from a theoretilattices of pulse-coupled oscillators are currently used to
cal point of view is to consider a pulse coupling, or in othermodelize certain types of cardiac arrhythmias where there is
words, oscillators coupled through instantaneous interactiong" abnormally rapid heartbeat whose period is set by the
that take place in a very specific moment of its period. Thelime that an excitation takes to travel the cirdui6]. More-
richness of behavior of these pulse-coupled oscillatory sysover, there are experiments where rings of a few R15 neu-
tems includes synchronization phenomef@], spatio- rons from Aplysia are constructed and stable patterns are
temporal pattern formatiofi7] (we could mention, for in- reported17]. Our one-dimensiondllD) model allows us to
stance, traveling wavel®], chessboard structur¢g], and  study analytically the most simple patterns and understand
periodic waves [10]), rhythm annihilation [11], self- their mechanisms of selection.
organized criticality[8], etc. The structure of this paper is as follows. In Sec. Il we

Most of the work on pattern formation has been done infeview the model introduced if13] as well as set the nota-
mean-field models or populations of just a few oscillators.tion used throughout the paper. In Sec. Il we study some
However, such restrictions do not allow us to consider thePattern properties which will be useful and in Sec. IV we
effect of certain variables whose effect can be crucial foPropose an estimation of the probability of selection of each
realistic systems. The specific topology of the connections opattern. In the final section we present our conclusions.
geometry of the system are some typical examples which
usually induce important changes in the collective behavior
of these models. Pattern formation usually takes place when Il. THE MODEL

oscillatory units interact in an inhibitory way, althoughithas system consists of a ring oN¢+1) pulse-coupled

also been shown that the shape of the interacting pulse, whefijjiators. The phase of each oscillatbr evolves linearly
the spike lasts for a certain amount of time, or time delays in, time

the interactions, can lead to spatio-temporal pattern forma-

tion also in the case of excitatory couplinfs4,15. Only

recently, general solutions for the general case, where the do, )

pattern existence and stability are proved, have been worked Ezly vV i=0,...N @
out[12,13. The aim of this paper is to study some pattern

until one of them reaches the threshold vaibig=1. When
*Electronic address: xguardi@ffn.ub.es this happens the oscillator fires and changes the state of its
"Electronic address: albert@ffn.ub.es rightmost neighbor according to
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subjected to periodic boundary conditions, i.8.+1=0, R
and wheres denotes the strength of the coupling ame- 1 where the X3 matrix is M,, and so on. Once we have

+ &, where we have assumed that, from an effective point Ofieflned all possible firing maps for a given number of oscil-

. . ; . ators, we can proceed to deal with the attractors or fixed
view, the pulse interaction between oscillators, as well as the

state of each unit of the system, can be described in terms ]plnts pf the system dynamics. As has p_een F’m"e[d?ﬂ"
; . : ese fixed points must be cyclesf 1 firings. We define
changes in the phase, or in other words, in terms of the

) a cycle as a sequence of consecutive firings where each os-
so-called phase response cuf®RCO), ¢ in our case. A Y q 9

PRC for a given oscillator represents the phase advance 8}Ilator fires once and only once. Mathematically, each cycle

. ; is described by means of a return map. The return map is the
delay as a result of receiving an external stimulhe pulse i ) L i
at different moments in the cycle of the oscillator. We will fransformation that gives the evolution @f during a cycle
assume: <0 throughout the paper, as we are only interestecf“?d is the composition of all firing maps involved in the
in spatio-temporal pattern formation anc-0 always leads NG sequence of that cycle,
to the globally synchronized staf#3]. This linear PRC has -,
a physical sense in some situations. For instance, it shows up P =TeoTe, ool
when we expand the nonlinear PRC for the Peskin model of . . .
pacemaker cardiac cel[l8] in powers of the convexity of the Where TeeTe(4) is the usual composition operation
driving or in neuronal modeling18]. In practice, however, Tc(T¢(¢)) and
this condition can be relaxed since a nonlinear PRC does not A
change the qualitative behavior of the model provided the . . N : -
number of fixed points of the dynamics is not altered. More- =1+ 2 1l Mj)-1 and
over, a linear PRC has the advantage of making the system
tractable from an analytical point of view. Note that not all possible combinations of firing maps are

Let us describe the notation used in the paper. The popuallowed, just those whose indices sum p(N+1) without

lation is ordered according to the following criterion: The any partial sum equal tq(N+ 1), wherep>q are positive
oscillator which fires will always be labeled as unit 0 and theintegers.
rest of the population will be ordered from this unit clock-  As all firing maps are linear transformations, return maps
wise. After the firing, the system is driven until another os-are also linear. There ard! possible cycles in thN+1
cillator reaches the threshold. Then we relabel the units suchscillators caséall permutations of firing sequences with the
that the oscillator aty=1 is now unit number 0, and so on. initial firing oscillator ¢, fixed). Following our previous ex-
This firing + driving (FD) process foN+ 1 oscillators can  ample, for the four-oscillators case all possible firing se-
be described through a suitable transformation guences and their associated return maps are

(¢)=Rc+ M9, (4)

CN+1

CN+1

Me=TT M.

i=cy \j=cq I=¢1

A: 0,1,2,3—>T1°T10T1°T1,

b =T(p)=1+Myd, 2
¢ =T(d) k¢ 2 0,132 T,o T Too Ty,

where M, is anNXx N matrix, ¢ is a vector withN compo- 02,13>T1oTToeTo,

nents, lis a vector with all its components equal to 1, dnd
stands for the index of the oscillator which will fire next. We
call this kind of transformation a firing map, and we have to
define as many firing maps as oscillators could fire, that is,
index k must run fromk=1 (¢ fires) to N (¢ fires). For F: 0,3,2,15Tg0T3TgoTs5.

example, in theN+1=4 oscillators case we have that the

ﬁring map Corresponding to the FD process, WWEGS the Now, in order to find the attractors of the dynamics, we must

0,2,3,1—>T3°T2°T1°T2 ,

m O 0O @

0,3,1,2—>T2°T10T2°T3 y

next oscillator which fires, solve the fixed-point equation
b¢ =Rt Ve ®)
do=1 ﬁrig 0 driing 1-¢r=¢, for every cyclec. Formally,
b1 = wdr — uditl-go=¢y, =R (I-My) L. (6)
¢ = b - 1=do, As was shown if13], there areN different stable solutions
b3  —  P3  —  Patl-dr=¢1, to the whole set of fixed-point equations. Their stability is

assured by the fact that<O0, since it guarantees that all
R eigenvalues ofl; lie inside the unit circle for all cycles. In
would beTy(¢), our four-oscillators example, these solutions are
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Number P Their first component is always the one that becomes larger
o ol than unity earlier and this happens, for eachand according
= to Eq. (9), when
N+1=2 -
N+1
* 1 _

o Y e<er=1 el (8)
N+1=3

.:. -j Our coupling strength range of interest ends at— 1, since

ate<—1 we always find the same pathological dynamics,
which does not have any physical or biological sense. Real-

m=1
wi=+ I B B B | istic couplings never reach such higher values. Therefore, as

e runs from 0 to—1, all patterns whosen satisfy m>N
FIG. 1. Graphic representation of the patterns solution of Bg. 4+ 1/2 disappear.
for a small value of the coupling strengté| at the beginning of the There is another interesting pattern property which has to
cycle (we must keep in mind that spatio-temporal patterns are dyyq with the calculation of the pattern degeneraCyN
namical structures that evolve in timerhe leftmost square repre- 1m). In principle, to calculate such degeneration, we
sents¢, and the rightmostpy, and their phase is visualized in a g, 14 solve fixed point Eq(6) for all possible cycles and
gray scale where black meags=1 and white¢=0. count how many of them lead to the same pattern. Although
for few oscillators the problem is quite straightforward, as
we deal with a higher and higher number of oscillators, the
number of cycles increaséis grows asN!) and solving Eq.
(6) becomes more difficult. Fortunately, there is another way
of calculatingC(N+1,m) which reduces the problem to a
combinatorial question. Let us show it through an example.
In the previous four-oscillators case, if we count, for each
firing sequence, the number of oscillators which have re-
' ceived the pulse before firing, we can easily realize that this
number is the same as its valuerof

which are a kind of four-oscillators traveling wave, chess-

m=2 m=3

3 2 1
4+ 3’4+ 3’4+ 3¢

dr=|1

- - - - 1 1
* Tk _ Tk _ Tk _ _
b5 =pc=bp= e (1’2+8’1’2+s

1 2+¢& 3+¢
4+e'4d+e’ 4+¢

-

dr=|1

board, and inverse traveling-wave structures. A: 01,23, m=3,
From now on we will label such solutions with index o
(m=1, ... N) since their first component always satisfies B: 01,32, m=2,
m __
* C: 0213, m=2
i NI U
) N D: 0,23,1, m=2,
Therefore, in the example, we relabel pattexps as m
=3, ¢, B¢, 5, Pt asm=2, andhf asm=1. E: 0312, m=2
Since there ar@l! possible cycles andll solutions to Eg.
(7), there will be some fixed points or patterns which will F: 0321, m=1.

appear more than once, so we shall G¢&+ 1,m) to char-

acterize these degeneracies. In the example, the values of thre an overbar means that the oscillator has already re-
degeneracies a@(4,1)=C(4,3)=1 andC(4,2)=4.Ingen-  ceived a pulse during the cycle. The point is that it turns out
eral, patterns which are solutions of a cycle consisting of thehat every patterrm corresponds to a sequence of firings
iterative application of the same firing ma&asA andF in  involving exactlym oscillators that, when they do fire, had
our examplg have no periodicities, whereas the solutions ofalready received a pulse from their leftmost neighbor. There-
mixtures of different firing mapsg, C, D, and E) have fore, this property(we have checked for several values of
some periodic structures that are also solutions of(Bgfor N+ 1) allows us to associate every cycle with the pattern it
a case with fewer oscillators. In Fig. 1 we can visualize theleads to, just by counting these kinds of firings. Now, calcu-
solutions forN+1=2, 3, and 4 oscillators and realize that |ating C(N+1,m) becomes a straightforward matter. In
solutionm= 2 for the four-oscillators case is a periodic com- Table | we have compute@(N+ 1,m) for several values of

position of solutionm=1 for the two-oscillators case. N+1.
Apart from brute force counting, degeneracy distribution
Ill. PATTERN PROPERTIES C(N+1,m) can also be determined from the following rela-

As we have seen, the stability of all pattern solutions oftlon'
Eq. (6) is guaranteed by the fact tha& 0, but the existence C(N+1m)=mC(N,m)+(N+1—m)C(N,m—1) (9)
of such solutions is not ensured. In fact, for small values of
the coupling strengthe| all patterns do exist, but, as we for 2<m=N-—1. This recursion relation is closed by
increase it, some patterns disappear. The reason for this is
that the solution loses its physical meaning becap&e- 1. C(N+1,)=C(N+1N)=1, (10
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TABLE |. Pattern degenerac(N+1,m). The first column  phase(that is, if it has a phase slightly below 1 it has a
stands for the numbeX+ 1 of oscillators and the first row fan. higher probability to be the next firing oscillator, whereas if
it has a smaller phase, it will rarely fire ngxtmagine the

1 2 3 4 S 6 7 8 9 phases of all oscillators randomly distributed over the inter-

2 1 val (0,1). Then we let the system evolve until one of the
oscillators reaches a phage=1 and emits a pulse that is

31 1 . S ! - .

4 1 4 1 received by its rightmost neighbor, which lowers its phase by
an amountk ¢; , ;. Now we assume that all phases are again

5 1 11 11 1 S .
randomly distributed over (0,1) except the one which re-

6 1 26 66 26 1 . L
ceived the pulse whose phase is distributed over+«@)L

7 1 57 302 302 57 1 . -

8 1 120 1191 2416 1101 120 1 So, we get rid of memory effectsve know that the oscillator
that has fired should, now, have a phase equal to) zerd

9 1 247 4293 15619 15619 4293 247 just keep in mind whether each oscillator has received a

10 1 502 14608 88234 156190 88234 14608 502 1

pulse or not. Therefore, the point is that under these condi-
tions, the probability that one oscillator which has still not

received a pulse fires is some constant and, on the other
hand, for those that had, the probability is this constant times

which corresponds to the firing sequences

ON,(N—1) ZI and 01 5 —(N—l) N the factor (+¢). Then, we can characterize the probability
o T e Y of having some cycle just by recalling how many oscillators
respectively. fire, having previously received a pulse during that cycle.

From the previous relations one can deduce by inductiofasically, this probability is proportional to ie)", where
the symmetry of the distribution with respect to its extremes? stands for the number of oscillators which fire having al-

atm=1 andm=N, ready received a puldghe product of all constant terms will
be absorbed in a normalization fagtoFhis approach, where
C(N+1m)=C(N+1N+1—m) (17 we assume all firings as almost-independent events, can be

viewed as a kind of mean-field approximation. Then, as has
been shown before, since cycles leading to the same pattern
m always exactly haven oscillators that fire having received
z C(N+1m)=NL!. (12 the interacting pulse, we can give an estimation of the prob-
m ability for patternm selection in theN+ 1 oscillators case,

and

Another interesting property is the perialsiwf1 of each

spatio-temporal patterrm. Since all oscillators are in a

phase-locked state, they must oscillate with the same period. . ) .

Then, as the intrinsic period of each oscillator is 1, and wheriereA{e) is chosen so that a summation of the probabilities

any oscillator that receives the delaying pulse from its neighOver m gives 1,

bor has a phase equal #3 , one can easily realize that the

effective period is E pN+1
m

PN l(e)=Me)C(N+1,m)(1+e)™ (14)

m (g)=1. (19
N+1+2me

A =1t el = T me

13
13 In the limit of small coupling strengtle — 0, which is the
more interesting case for the majority of physical and bio-
éogical systems, one can assume that interaction plays almost
no role when pattern selection takes place. That is, the fact
that one oscillator has received the pulse from its neighbor
ﬂoes not lower its probability to fire, as the pulse does not
modify appreciably its phase. Then, we can consider that all
cycles have approximately the same probability to be se-
lected, (1+£)M—1, and only pattern degeneracy has to be
considered to get a good estimationmf™*,

Once we have characterized all spatio-temporal patterns,
we proceed to find some general formula which give us some n+1 C(N+1m)
estimation of the probability of each pattern to be selected, Pm =" NI (16)
or, in other words, an estimation of the volume of its basin of '
attraction. In order to achieve this objective, we should un-

derstand the mechanism which led to the selection of a cer-l-—he dominant pattern, that is, the one which has the larger

tain spatio-temporal structure and how it is modified as théarobability {o be selected, coincides with the mean value of
P P . m [due to the symmetric behavior G(N+1,m)],
parameters of the modet (in our casé¢ change.

There is an easy and straightforward way to get the essen-
tial features of this mechanism, assuming that the probability (MYps1= E mC(N+ 1m) _ N+ 1' (17)
of one oscillator to fire next is, basically, proportional to its E N! 2

Therefore, the larger the value wi the longer the period of
its associated pattern. It is important to notice that we hav
not fixed the value of such periodsach pattern has its own
which is different from the otheys since there are some
authors who fix all periods equal to some constant, and use
as a condition to find the structurgk7].

IV. PATTERN SELECTION
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m FIG. 4. p,, calculated by means of E(L7) for different values

o . . of N+ 1. The distribution gets narrower and the height of its peak
FIG. 2. Estimation o, for small coupling strength in the case diminishes as we increase the number of oscillators.
of an even number of oscillatold+1=10 and for values ot

equal to—0.01 and—0.1. Dashed line follows the theoretical val- . Nt s .
ues estimated through E€L6). We can realize that the smalley] increaseN+1, py ™" diminishes. The distribution also gets

is, the more accurate our estimations are. The most probable patteﬂ?rrower, as we mcreaﬂé—l— 1 and this becomes clear when
is m=(N+1)/2 and the probability for the patterns near the ex-On€ Studies the variance pf,. It can be found that
tremes is almost zero due to the fast decaygfthere. 2
5 - m2C(N+1,m) _(N+1) . N+1
For an odd number of oscillatofsn)y ., does not exist and MO+ m N! 4 12
we have a competition between the two closest patterns (18
=N/2 andm=(N+2)/2. Recall that the most probable pat-
terns turn out to be those with the “shortest wavelengths,” a/Ve could not prove this without an explicit expression for
fact that was already reported in simulations of these sorts d¢(N+1,m), but we have checked N up to 170. Therefore,
systemd7]. In Figs. 2 and 3 we check this new approxima-
tion for the N+1=10 and 9 case and realize that the ex- o2 :E: (M)n+1
pected results are in good agreement with simulations data. N+*17 12 6
There is also the interesting question of how this probabil-
ity distribution modifies when the number of oscillators in- It turns out that for a large number of oscillators, almost all
creases. In Fig. 4 we shopy, for different values oN+1.  initial conditions lead to a pattern whose approximately
Since there are more possible valuesthvailable, as we falls in the intervakm)y, ;= V(m)yn41. In order to compare
it for a different number of oscillators, we have to normalize

(19

o m dividing by N+ 1. In that case, one observes thueﬁ;+l
0.5+ e=-0.01 . ~1/JN+1, so that as we increade+ 1, the spread oph,"*
14 £=-01 diminishes getting the distribution sharpened.
0.4 o - As Eq. (14) does not take into account the disappearance
of the different patterns at the different values of;, pre-
0.3 4 dicted by Eq.(9), it cannot give a good quantitative estima-
| tion of pattern selection for higher coupling values. Never-
theless, we can expand E@d.4) to leading order ire. For
Prm 021 / } ] smalle, ph'? i
| N | , Pm ~ are approximated by
0.1 2 o, . C(N+1m N+1
> v SN ) +(m_ ; )a. (20
0.0 PO— | S S—
— ——T In Fig. 5 we compare this approximation with simulated
0 2 3 6 7 8 9 data. The slopes near=0 agree with Eq(21). In our simu-

lations we calculate the probability of each pattern to be
selected just by counting how many realizatidmsth ¢,

FIG. 3. The same as Fig. 2 but now for an odd number of= 1 and the rest of the oscillators with random initial condi-

oscillatorsN+1=9. We can realize that there is not a peak any-tions) lead to each pattermand divide over the total number
more, instead almost all the probability is concentrated in the twcdf realizations. Although we only have a good quantitative

competing patternsi=N/2 andm=(N+2)/2. estimation ofpﬁ+1 for small values ofe, Eq. (15) catches
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m | o o [o} (o] o pm(e) T
L o W W 0.4 1
0.2 L g ]
j = " " 0.3
0.0 i e e e e W B 02
T T T T T T T T T 1 0.1 4
0.10 0.08 -0.06 -0.04 -0.02 0.00 J

0.0 * * % + .

€ -1.0 0.8 -0.6 0.4 0.2 0.0
FIG. 5. Estimation op,"* for a system oN+1=6 oscillators €

by means of the linearized EQR1). For smalle the slopes match
with simulated data.

the two basic mechanisms responsible of pattern selectioggypled oscillators with inhibitory interactions. We have fo-
On the one hand, it is clear that for higher values of theyseqd our attention on estimating the probability of selecting
coupling strengthz|, when one oscillator receives a pulse, 5 certain pattern under arbitrary initial conditions and we

its pha;g lowers to almost zero and, consequgntly, its ﬁri.ngnave shown the two basic mechanisms responsible for that:
probability also does. Therefore, pattern selection probablllt)fhe degeneracy distributio@(N+1,m), for small values of

N+1 : .
Pm_"(#) is strongly controlled by the number of oscillators e, andm, the number of oscillators that do fire having al-

which have to fire having already received a pulse, that is . . !
the probabilistic factor (&)™ As a consequencqg,’}‘]“ teady received a pulse, for higher valuescofAccording to

begin to decrease sooner whef increases, the largen . this, the different probabilities of selecting pattemstart

: being distributed following the degeneracy distribution
Qn the pther hand, for small values of&he C.OUplmg. StrengthC(N+ 1,m), and, ax decreases, these probabilities diminish
interaction plays almost no role am,* (&) is dominated

N+1 in a hierarchical way: the larger the valuerofthe sooner its
by the d_egeneracy factaZ(N+1,m) ’ Therefore,p, ™ (&) selection probability is going to decrease, so that only pat-
for the different values om are basically ordered aS(N : . : :
. . .___terns with smallerm will survive for higher values ofe.
+1,m). In Figs. 6, 7, and 8 we show results from simulations . .
N4 1 ; . Moreover, some of the structures disappear, at the different
of p,," (&) for a different number of oscillators. * . .
values ofep,, during this process. We have found out an
V. CONCLUSIONS approximation formula forpwl(s) which takes into ac-
) . ) count all these mechanisms and gives us a quantitative esti-
In this paper we have studied some properties of thenation of the different selection probabilities for small
spatio-temporal patterns that appear in a ring of pulse- The estimation of the volume of the basin of attraction of

each spatio-temporal pattem also gives us an idea of the

FIG. 7. The same as Fig. 6 fdi+1=5.

1.0 5 o m=1 . ; . "
1 M stability of the different structures with respect to additive
0.9 1 o = m=2
* =
0.8+ %\% m=3 1.0+ o m=1
077 s dﬂﬂﬂ’qdﬂﬂ P 0.9- °  m=2
0 6 %&O d:h -
' -. om&o nd‘-‘% 0.8 1 %mlpanﬂnn:hh ¢ m=3
0.5 og . 4 ngﬁu Epdlw + m=4
pm(a) ] o Ve 0. 1 o iy x =
0.4 % % o8 m=5
- L e 0.6 Ty
03 1 I:hdﬂ:h a)cw B
] 0.5 1
0.2 d:,,ﬁf"m i P.(e)
1 o 0.4 1
0.1 -M W“ 4
] 0.3 4
0.0 1 d T T T d T d M‘I“‘ T 1 L
-1.0 -0.8 -0.6 -04 -0.2 0.0 0.2 4
€ 0.1 1
FIG. 6. py(g) in the case oN+1=4 oscillators. In this case, 0.0
we see that although for small coupling a chessboaré ) is the -1.0 -0.8 -0.6 0.4 0.2 0.0
dominant pattern, the inverse traveling wawva=1) is the most e

probable pattern for higher values of the coupling strength. Simu-
lations are done over 2500 realizations. FIG. 8. The same as Fig. 6 foi+1=6.
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noise fluctuationgfor instance, we can add some randomwith our results in the ring. That makes us believe we have
quantity » to all phases after each firing event or a continu-caught the basic features of the problem in obr thodel.

ous timen(t) in the driving. Simulations of arrays of noisy
pulse coupled oscillators showed that our most probable pat-
terns were also the most staljlé]. The present paper only
concerns spatio-temporal pattern formation in a ring of os- The authors are indebted to C. Jr&eand A. Arenas for
cillators, nevertheless all results are trivially generalized tovery fruitful discussions. This work has been supported by
bidirectional couplings. Although the question of what hap-DGICYT of the Spanish Government through Grant No.
pens when dealing with higher dimension lattices remain$®B96-0168 and EU TMR Grant No. ERBFMRXCT980183.
opened, some simulation results i Z7] showed that al- X.G. also acknowledges financial support from the Generali-
most all realizations lead to a chessboard pattern in analogyt de Catalunya.
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